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Abstract. Sleep is one of the most important bodily functions for main-
taining a healthy lifestyle, especially for teenagers and young adults.
Though general guidelines for healthy sleeping habits for this age group
are well documented, it is often difficult to know exactly what bed time,
wake time, and total amount of sleep is best for a given individual based
on their personal biological needs. Given this shortcoming in current
sleep research, our goal is to create an algorithm that reliably classi-
fies EEG sleep data in order to predict the optimal sleep schedule for
an individual, specifically for a college student. In addition to this, we
address the shortcomings of current sleep data by developing our own
dataset of over 300 h of full night recordings for a single individual. Using
this dataset, we implement and compare various ML models, and discuss
limitations and areas of future work for prediction of optimal sleep.
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1 Introduction

1.1 Problem Statement

Sleep is a highly-important bodily function that helps maintain the health and
general well-being of the human body. Additionally, sleep plays a major role in
the development and well being of teens and young adults, a concept that has
become significantly more recognized with the advancements in sleep research
and analysis. For example, it has been observed that proper sleep provides var-
ious benefits, such as promoting growth, learning, and cognitive development,
strengthening the immune system, and decreasing the chances of illnesses such
as heart disease [6]. These benefits corroborate research which shows a strong
correlation between high sleep quality and better academic performance, a fac-
tor which is without a doubt of great importance to many college students [23].
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The lack of sleep, on the other hand, is tied to various health concerns such as
increased risk of obesity, increased probability of taking risk-taking behaviors,
and overall detrimental effects to mental health [37]. Because of the importance
of proper sleeping habits for teenagers and young adults, and especially for col-
lege students, it is necessary to determine what types of sleeping patterns are
best for this specific demographic.

Plenty of research has already been done on this topic[1,2,8,16,21,24,32,33,
35,36]. For instance, Chaput et al. [7] reports that young adults need more sleep
than older adults. However, while these findings generally outline the optimal
sleeping habits for teens and young adults, the specific needs for individuals
vary depending on a large variety of biological factors as well as lifestyles. Addi-
tionally, since people naturally lead varying lifestyles, it is impossible for many
individuals to follow the sleeping recommendations proposed for their demo-
graphic. College students notably fall under this category, since college life often
encourages staying up to extreme hours to finish assignments and spend time
with friends [12]. For the above reasons, it is necessary to devise a system that
can diagnose the specific optimal sleeping patterns of an individual. Because of
the usefulness such a system would provide to college students in particular, this
study attempts to develop an algorithm to help college students determine their
personalized optimal sleeping schedule.

1.2 Literature Review

When reviewing currently available sleep-related literature, it is apparent that
such an algorithm to obtain individualized data for optimal sleep would be novel.
This is seemingly the case because there is limited data available for the long-
term study of an individual’s sleeping patterns compared to other types of sleep-
ing data. For instance, epidemiological data has shown chronically inadequate
sleep in the general population, with various experts claiming the core sleep
duration needed to be of 6 h [9]. This number has varied over the years, with
a general consensus of 6 to 9 h of sleep needed by an individual [13]. However,
there exists a lack of studies done on the specific sleep needs of individuals.

A sample of papers cited in Roy [32] and Craik [8] find that most sleep-
ing studies use datasets consisting of various people whose sleep patterns are
monitored for a shorter period of time. Studies such as Arnal et al. [5], Giri et
al. [11], and Hou et al. [14] (and many others) have been done on sleep stage
classification, the process of determining whether a person is either awake, in
non-rapid eye movement sleep (NREM), or in rapid eye movement sleep (REM)
at any given point during their sleep. These studies generally use Electroen-
cephalography (EEG) technology coupled with deep learning (DL) algorithms
to determine the sleep phase. Ansari et al. [4]. dives further into sleep stage
classification, using EEG technology specifically with infants to help optimize
their brain development during sleep. Additionally, Kemp et al. [17]. uses EEG
technology to quantify how deep one’s sleep is. However, because each of these
studies utilize various participants with each participant studied for a shorter
period of time, it is difficult to repurpose these datasets to draw conclusions
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pertaining to a single individual. In other words, there simply is not enough
data available on any given individual to analyze their personal sleep patterns
sufficiently.

Moreover, while there are a limited number of datasets available that include
sufficient data for the individual to train an ML algorithm, these data sets
are largely unusable for the purposes of this study. For one, because wearing
EEG headsets for extended periods of time can be uncomfortable, these exist-
ing datasets are usually composed of individuals who are in critical condition
and are being monitored for extended periods of time by hospital staff. Since
these individuals have underlying health conditions and are generally not in
the teenage and young adult demographic, their data cannot be used to train
algorithms intended for the average healthy college student. Secondly, extensive
data revealing a single-individual’s sleeping patterns can be subject to privacy
and ethical concerns. Ultimately, to the best of our knowledge, there currently
exists no study which focuses on a long-term analysis of an individual, with
the longest individual sleep recording from the aforementioned studies being of
3 weeks. We also reviewed the machine learning and deep learning algorithms for
EEG classification to analyze our experimental data better [8,18,19,27,29,32].

1.3 Purpose of Study

For this reason, the purpose of the study is to generate long-term sleep data of
a college student using a comfortable and non-intrusive EEG headset, and ulti-
mately use the data to train a ML algorithm that can diagnose the college stu-
dent’s optimal sleeping patterns. If successful, the study would attempt to refine
the algorithm such that it could be applied to other healthy college students to
find their optimal sleeping patterns. As alluded to above, this study could be
extremely beneficial to college students, since the knowledge of one’s sleeping
schedule can pay dividends on an individual’s physical and mental health.

1.4 Research Question

Thus, the research question we intend to answer is: How can we use ML models
and EEG technology to accurately detect an individual college student’s optimal
sleeping schedule?

2 Method

2.1 Dataset

The dataset used for this study contains 41 full nights of sleep data and was
provided by an undergraduate college student (who will remain anonymous for
privacy concerns). The college student is a 19 year-old Caucasian male from the
United States, and is a generally healthy individual who maintains a healthy
diet, drinks a sufficient amount of water, and frequently exercises. In additional
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to the clinical experimental devices [8,20,28], there are several consumer-grade
non-invasive EEG headsets available at the time of the experiment [15,25,34].
The subject used a Muse S (Generation 2) headband for recording sleep sessions
(see Fig. 1). The dataset includes a number of metrics for each of the 41 nights
of sleep data. Specifically, bed time, wake time, time in bed, time asleep, sleep
stages, sleep position, sleep intensity, heart rate, stillness, and a value of 1–100
representing the overall quality of a given night’s sleep were recorded. Bedtime
and wake time refer to the times at which the subject fell asleep and woke up
for any given session, with time in bed being the difference between these two
metrics and sleep duration being the amount of total time the subject was asleep.
The sleep stage metric recorded the total amount of time the subject spent in
each of the four sleep stages: awake, rapid eye movement (REM), light sleep,
and deep. Sleep position refers to the amount of time the subject spent sleeping
on each their left side, right side, back, and front. Sleep intensity measured the
relative intensity of a given night’s sleep. Stillness was determined by the total
amount of time the subject was “active” and “relaxed” throughout the night.
Lastly, the dataset includes a single statistic summarizing the quality of the
subject’s sleep for any given night, with a score of 75 translating roughly to an
average night’s sleep for the average person. This value is determined by the
Muse headset’s software, and is trusted to be a reasonably accurate numerical
representation of the quality of a given session.

Fig. 1. Diagram of Muse S and sensors.

2.2 Note on Exportation of Dataset

When collecting data using the Muse S headset, the subject synced the headset
with the official Muse mobile application, which provides an interface for viewing
logged sleep sessions. In recent years, Muse removed the capability to export raw
EEG files from the application, and provides no alternate method for recovering
the raw EEG files. For this reason, the data that was presented in the Muse
application was manually entered into a spreadsheet in .xlsx format. Thus, it
should be noted that the data is preprocessed by the official Muse application.
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2.3 Accessing the Dataset

For ease of reproducibility, the study’s official GitHub page details the process of
downloading the dataset. The page is available at https://github.com/ztgillette/
optimal-sleep-algorithm.

2.4 Overview of Experimental Design

Using the set of an individual’s sleep data, the intention of the experiment is
to create a model that predicts the aspects of an optional night’s sleep for that
person. As described in the dataset section, bed time, wake time, time in bed,
time asleep, sleep stages, sleep position, sleep intensity, heart rate, stillness, and
a value of 1–100 representing the overall quality of a given night’s sleep were
recorded for a set of nights. Since a metric that represents the overall quality
of sleep is provided, it is possible to apply machine learning algorithms to learn
to classify certain ranges of sleep metrics with their corresponding sleep scores.
In other words, machine learning can be utilized to learn what values for each
of the sleep metrics correspond with better nights of sleep. Since these sets of
values are determined to result in a better night’s sleep, they are considered the
desirable metrics that subjects would intend to emulate each night in practi-
cal use. However, given that certain metrics such as average heart rate, sleep
intensity, and stillness are usually out of one’s control during sleep, we are most
interested in the relationship between bed time, wake time, and sleep duration
and their corresponding sleep scores, since these metrics can be easily controlled
by the subject. We are interested in aspects of the data that subject can control
because the model can then be used as a tool to aid subjects in determining their
best sleep practices. Thus, by analyzing the set of bed times, wake times, and
sleep duration times that correspond to higher sleep scores, we can determine
the bed times, wake times, and sleep duration that are most beneficial for the
subject based on their given data.

2.5 Comparison of Algorithms

EEG data is a type of personalized time-series data [8,19,26]. In order to per-
form the experiment, the appropriate algorithm has to be selected to accurately
determine which types of sleep data correspond with high sleep scores. Because
the experiment requires selecting a known class for a collection of data, a super-
vised classification algorithm is ideal. A number of algorithms meet this criteria,
including K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Lin-
ear Discriminant Analysis (LDA), and Decision Tree Classifiers, among others
[18,29,30]. Two of the most common and widely discussed algorithms used when
processing EEG signals are KNN and SVM. More specifically, both KNN and
SVM have been extensively used and analyzed in previous work in relation to
EEG signals, with a range of results from different studies. For example, Mousa
et al. [22] demonstrates a relative higher accuracy and fidelity in the KNN model

https://github.com/ztgillette/optimal-sleep-algorithm.
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when used for EEG signals compared to the SVM model. However, Amancio et
al. [3] shows a greater accuracy of SVM models in comparison to KNN models.

Generally speaking, the KNN Machine learning model takes a predefined
number of K samples closest to a point and predicts the label from these. The
number of K samples can be user defined and a constant, or can vary based on
density of points. The distance between points is usually measured in Euclidean
distance. As a supervised model, KNN first computes the K nearest neighbors
through training, and then uses that training to predict the nearest neighbors
for a given dataset, hence categorizing data points into the predetermined labels
(see Fig. 1). While SVMs are also supervised machine learning models, their
implementation varies from that of KNNs. SVMs work by projecting non-linear
data onto higher dimension space (also known as the kernel trick). In doing so,
SVMs make it easier to classify data. Through this process, an optimal bound-
ary between possible output can be found. This allows the algorithm to figure
out how to separate or classify the data based on defined labels or outputs (see
Fig. 2). Additionally, LDA is a statistical model for topic modeling. Although
this topic modeling algorithm is usually used as an unsupervised form of classi-
fication, often used for preprocessing of data, it can also be used as a supervised
form of classification. More specifically, LDA uses matrix factorization to solve
classification problems. LDA is especially useful when needing to reduce features
of a higher dimensional space onto a lower dimensional space. Hence, it is able
to reduce both resources and dimensional costs (see Fig. 3). Finally, a Decision
Tree Classifier (DTC) is a tree-structured classifier, where internal nodes repre-
sent the features of a dataset, branches represent the decision rules and each leaf
node represents the outcome. There exists two main types of DTCs, those which
have a continuous target variable - Continuous variable decision trees - and those
which have a categorical target variable - Categorical variable decision trees (see
Fig. 4). Hence, this study focuses on how EEG data can be precisely categorized
by comparing all four of the aforementioned ML algorithms in order to assess
the best approach for further research in determining optimal sleep schedules.

2.6 Implementation of the Machine Learning Algorithms

We implement SVM, KNN, LDA, and DTC models for this study. All four of
the ML models are implemented using the scikit-learn machine learning library,
as noted in the provided repository. Additionally, some of the ML models are
implemented using specific parameters. For instance, for the SVM algorithm,
we implement a SVM model using a linear kernel, creating a single hyperplane
to categorize sleep data into two categories: accurate and not accurate. Due to
only needing one kernel for the two categories, we can maximize scalability and
practicality in using a linear SVM as opposed to a non-linear SVM algorithm.
Another specific parameter that we use is for the KNN algorithm, for which we
implement a KNN model using K = 5 as the K value.

We implement all four of the ML algorithms using a train-test split of 80/20
(see Fig. 2). We run each model 100,000 times, each iteration with a new train-
test set of data, and use the mean accuracy rate to determine the algorithm
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performance. The accuracy rate of a given algorithm is determined by comparing
the predicted overall quality score with the actual overall quality score. If the
predicted overall quality value is within a certain window, we deem the given
prediction accurate. We coin this term the correctness window. For instance,
a predicted sleep quality score of 83 with an actual sleep quality score of 85
would fit within a correctness window of 5, as 83 is less than 5 over or under the
actual score of 85 (see Fig. 3). In order to analyze and test the four ML models,
we utilize a correctness window of 7.5, deeming a predicted score within that
window accurate.

Fig. 2. The pie chart represents an 80/20 train-test split with over 300 h of sleep
collected.

Fig. 3. Diagram of correctness window. A predicted sleep quality score of 83 with an
actual score of 85 fits within a correctness window of 5. Hence, the predicted score is
deemed accurate.
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2.7 Effectiveness of the Machine Learning Algorithms

As indicated by Fig. 4, SVM is shown to be the most effective classification
algorithm for our task with an accuracy rate of over 65%. The other algorithms
follow in accuracy in descending order: KNN, DTC, and LDA, respectively. It
is worth noting that neither ML model demonstrates a relatively high accuracy,
being evident of a need for future research and the possible limitations of this
study. This is further discussed in the Discussion and Conclusion. However, due
to being the algorithm with the highest accuracy, SVM is used in the second
part of this study.

2.8 Applying SVM

Given that SVM is shown to be the most effective classification algorithm for our
task with an accuracy rate of over 65%, we select it for the task of determining
the relationship between sleep metrics and their overall sleep scores. With the
algorithm already trained from the previous phase of comparing the effectiveness
of the algorithms on the dataset, the SVM algorithm is then used to generate
the bed times, wake times, and sleep duration times that correspond to desirable
sleep scores. Here, we consider “desirable” to be any sleep score that meets or
exceeds a certain threshold determined by the user. In our results, we set this
mark as a sleep score of 90, meaning that only bed times, wake times, and sleep
duration times that resulted in a score of 90 or more would be considered in the
final output.

Fig. 4. Average accuracy of ML models based on a correctness window of 7.5; 100,000
total iterations.
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To determine these sleep times, we first generated a set of 100,000 sample
nights of sleep. Each sample night was set with data that was generated randomly
using realistic values from the dataset. Specifically, for each category of data for
any given sample night, a random value between the minimum and maximum for
that value in the dataset was selected. By creating these 100,000 sample nights,
we then could apply the trained SVM algorithm to determine which of the nights
would be expected to yield a score of 90 or more. We filtered out sample nights
of data that were not expected to reach an overall sleep score of 90, leaving
only data that was expected to yield “desirable” scores. From this subset, we
then considered only the bed times, wake times, and sleep duration values, and
calculated their mean and median values. Presented in the figure below are the
Sleep Prediction Results that were determined from the median values for each
bed time, wake time, and sleep duration. Note, the results include a window of
15 min to provide a more logistically-attainable bed, wake, and sleep duration
time.

3 Result

The predicted sleep schedule for the subject is as follows: 9 h and 30 min of sleep,
with a bedtime of 1:00am with a precision of up to 15 min, and a wake time of
10:04 am with a precision of up to 15 min (see Table 1).

Table 1. Optimal sleep prediction results using a SVM classification model; 1000
iterations.

Sleep prediction results

Optimal bedtime 1:00 AM + / – 15 min

Optimal wake time 10:04 AM + / – 15 min

Optimal sleep duration 9 h 30 min + / – 15 min

4 Discussion and Future Work

Based on the reasonable nature of our results given our dataset, as well as their
correspondence with general sleep recommendations for teenagers and young
adults, we believe that our algorithm is generally effective in predicting the
optimal sleep schedules for teenagers and young adults. This can be compared
to studies by Richards et al. [31] as well as Gillen-O’Neel et al. [10], which show
that teenagers and young adults need approximately a little over 9 h of sleep.

However, we also believe that three specific improvements to our dataset
would greatly improve the accuracy. Firstly, it would be greatly beneficial to
collect additional nights of sleep data, since this would improve the ability of
the SVM algorithm to accurately classify the sleep data with its overall sleep
score. Specifically, we would like to curate upwards of 100 nights of sleep data.
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On that front, a significant increase in the number of nights of data would make
it possible to apply a deep learning algorithm such as CNN or RNN to the
dataset. We refrained from implementing deep learning algorithms during this
initial stage of research, since deep learning algorithms tend to require large
amounts of data to be effective. In addition to opening the door to deep learning
algorithms, adding additional nights of sleep data would also create the possi-
bility that another machine learning algorithm (KNN, LDA, etc.) exceed SVM
in accuracy. This is due to the general trait of machine learning algorithms of
having varying accuracy rates depending on the size of the datasets. Secondly,
it would be optimal to recruit additional subjects to partake in the study. An
inherent limitation to the study as it has currently been performed is that only
one subject was utilized. While our algorithm proved effective for our single
subject, there is no evidence to say that such an algorithm would be effective
if applied to an alternate set of sleep data from a different subject. For this
reason, we intend in our future work to recruit 10–15 additional college-aged
individuals so that the algorithm can be trained to be effective for generally for
college students rather than for the single subject that was used in this initial
stage of the experiment. Thirdly, we recognize that manually creating a dataset
using preprocessed data from the Muse mobile application is neither a desired
nor logistically sustainable approach for the future work of this study. For this
reason, we have recently begun advising that our subject use a third-party appli-
cation called Mind Monitor to record their nights of sleep, since the application
allows for the raw EEG data from the Muse headset to be collected in DropBox
and exported in a variety of file types.

In addition to the limitations posed by our dataset, we also want to address
some potential limitations in our future work so that they can be avoided. We
expect our primary limitation to be our ability to recruit additional subjects to
partake in the study. One reason for this is due to the inconvenience of wearing
the Muse headset while sleeping. While the Muse S headset is significantly more
comfortable than other EEG-collecting head trackers, it is still an instrument
that can be uncomfortable while sleeping. Additionally, since the Muse S is
powered by rechargeable batteries, charging and/or battery issues often result
in the headset not being fully charged when the subject desires to go to bed.
Moreover, in order to get the most accurate EEG readings, it is necessary for
the headset to maintain direct contact with the skin on one’s head. This means
that individuals with hair on the sides of their head may have significant trouble
creating a sufficient connection between the headset and their skin, meaning
that a close-cut haircut or a significant amount of nightly hair manipulation is
necessary. In addition to inconveniences regarding the Muse headset, we also
expect the length of the study to deter potential subjects. As noted in our
discussion of the dataset, we plan to collect over 100 nights of sleep for each
subject to ensure that the machine learning algorithms have sufficient data to
train. Given that 100 nights is well over 3 months of commitment, we find it
unlikely that college students would be willing to participate. An alternative
that we have considered is using smart watches to track sleep data. This solution
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would provide a more comfortable and less invasive alternative to wearing Muse
headsets. Additionally, smart watches tend to have longer and more consistent
battery lives than the Muse headsets, meaning that charging-related issues would
not pose as much of a barrier. Finally, due to their comfortable and easy-to-use
design, it is more likely that college students would be willing to commit to
months or potentially years of nightly data collection.

5 Conclusion

Given the importance of sleep in maintaining a healthy lifestyle, especially for
teenagers and young adults, our research was focused on devising an algorithm
to optimize sleep schedules on an individualized level. We created a dataset of
over 300 h of sleep data for a single subject, and used that dataset to train four
machine learning algorithms. We found that SVM proved most accurate in clas-
sifying our sleep data, and selected it as our algorithm of choice for determining
the optimal bed times, wake times, and sleep duration times for the subject.
Using SVM, we determined that based on the collected dataset, the subject’s
ideal bedtime was about 1:00am and ideal wake time was about 10:00am, with
their ideal total sleep duration being around 9.5 h. While these results appear
reasonable based on the dataset, we expect that a number of adjustments in our
dataset would lead to increased precision. In our future work, we would like to
record additional nights of data in our dataset, recruit 10–15 subjects to record
nightly data, and use raw EEG data rather than preprocessed data. Ultimately,
we hope that with this study we are able to provide a foundation for future
work towards more accurate results, and towards more individualized sleep data
collection and healthcare.
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